Supervised Fractional-Order Embedding Geometrical Multi-View CCA (SFGMCCA) for Multiple Feature Integration
نویسندگان
چکیده
منابع مشابه
Intra-View and Inter-View Supervised Correlation Analysis for Multi-View Feature Learning
Multi-view feature learning is an attractive research topic with great practical success. Canonical correlation analysis (CCA) has become an important technique in multi-view learning, since it can fully utilize the inter-view correlation. In this paper, we mainly study the CCA based multi-view supervised feature learning technique where the labels of training samples are known. Several supervi...
متن کاملBeyond CCA: Moment Matching for Multi-View Models
We introduce three novel semi-parametric extensions of probabilistic canonical correlation analysis with identifiability guarantees. We consider moment matching techniques for estimation in these models. For that, by drawing explicit links between the new models and a discrete version of independent component analysis (DICA), we first extend the DICA cumulant tensors to the new discrete version...
متن کاملPartially Supervised Graph Embedding for Positive Unlabelled Feature Selection
Selecting discriminative features in positive unlabelled (PU) learning tasks is a challenging problem due to lack of negative class information. Traditional supervised and semi-supervised feature selection methods are not able to be applied directly in this scenario, and unsupervised feature selection algorithms are designed to handle unlabelled data while neglecting the available information f...
متن کاملMulti-View Unsupervised User Feature Embedding for Social Media-based Substance Use Prediction
In this paper, we demonstrate how the state-of-the-art machine learning and text mining techniques can be used to build effective social media-based substance use detection systems. Since a substance use ground truth is difficult to obtain on a large scale, to maximize system performance, we explore different unsupervised feature learning methods to take advantage of a large amount of unsupervi...
متن کاملSemi-Supervised Learning with Multi-View Embedding: Theory and Application with Convolutional Neural Networks
This paper presents a theoretical analysis of multi-view embedding – feature embedding that can be learned from unlabeled data through the task of predicting one view from another. We prove its usefulness in supervised learning under certain conditions. The result explains the effectiveness of some existing methods such as word embedding. Based on this theory, we propose a new semi-supervised l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3003619